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Abstract—We report new and complementary routes for the highly stereoselective construction of functionalized benzoquinolizidine
targets from readily available, non-racemic chiral templates. The methods developed allow us to predetermine relative product ste-
reochemistries by judicious choice of substrate sub-structure, and provide ready access to alternative stereoisomers.
� 2006 Elsevier Ltd. All rights reserved.
The benzo[a]quinolizidine ring system is of considerable
interest and significance since this heterocyclic template
is found within a range of pharmacologically interesting
alkaloids. For example (�)-protoemetinol 1,1 isolated
by Battersby from Alangium lamarckii, is structurally re-
lated to psychotrine 2 and O-methylpsychotrine 3, and
indeed 1 has formed the basis of synthetic approaches
to these more functionalized derivatives.2 Alangine, 4,
a recently isolated natural product also from A. lama-
rckii differs stereochemically from compounds 1–3 in
that it has trans relative stereochemistry at positions 2
and 11b.3 Compounds 2 and 3 are known to be potent
inhibitors of HIV-1 reverse transcriptase, and such
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biological significance earmarks the development of
new asymmetric routes for accessing functionalized
benzo[a]quinolizidine targets as an important task.4

Over recent years our research teams have, indepen-
dently, developed a new approach for the stereoselective
synthesis of heterocyclic ring systems that involves the
cyclization of a pendent aromatic substituent onto an
N-acyliminium intermediate as the key ring-forming
step.5 We now wish to report the development of com-
plementary routes for the highly stereoselective synthesis
of functionalized benzo[a]quinolizidine targets that
allow at will, the efficient preparation of targets with a
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range of relative product stereochemistries through
judicious choice of substrate structure and reaction
protocol.

We envisaged one route to the chosen functionalized
targets through application of conjugate addition chem-
istry to an a,b-unsaturated tetrahydroisoquinoline
substrate, since in related work on an indolo[2,3-a]quin-
olizine skeleton the use of appropriate nucleophilic
reagents in conjugate addition reactions has proved to
be very successful, proceeding with good yield and with
exclusive diastereoselectivity.6,7

In an attempt to influence the approach of the attacking
nucleophile we generated template 6 through TBDPS-
protection of the hydroxyl group of 5 before introducing
unsaturation (Scheme 1). Substrate 5 was obtained as a
single diastereoisomer on Lewis acid induced cyclization
of the corresponding bicyclic lactam precursor, as previ-
ously reported by our group.8 Our aim here was to
shield the ‘upper’ face of the heterocycle to encourage
attack from below, and hence produce the desired cis
product stereochemistry (relative to the H-atoms at
stereocentres 2 and 11b).

The results of conjugate addition studies on template 6
are highlighted in Scheme 2, with product 7 isolated in
70% yield as a single diastereoisomer, and product 8 in
55% yield but as a 1:1 mixture of diastereoisomers.
The relative stereochemistry of 7 was confirmed by
nOe studies, and found to have trans relative stereo-
chemistry with respect to the H-atoms at the chiral
centres.9

One possible explanation for the observed stereochemi-
cal outcome of the conjugate addition reactions to
unsaturated lactam 6 could be, as highlighted in Figure
1, an axial attack of the vinyl cuprate, under stereoelec-
tronic control, to give the kinetic product 7. However,
the conjugate addition of the enolate of ethyl 1,3-dithiol-
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Scheme 1. Reagents and conditions: (i) imidazole (3 equiv), DMAP (cat.),
�78 �C to rt, 24 h; then NaIO4, NaHCO3, MeOH, H2O, rt, 18 h (42%, two
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Scheme 2. Reagents and conditions: (i) vinylmagnesium bromide (10 equiv)
LDA (2 equiv), ethyl 1,3-dithiolane-2-carboxylate (1.2 equiv), THF, �78 �C
ane-2-carboxylate may be reversible, affording the 1:1
mixture of isomers 8a (2,11b trans, kinetic):8b (2,11b
cis, thermodynamic) under the reaction conditions
(�78 �C to 25 �C, 24 h).

In an attempt to determine the effect, if any, of the
hydroxymethyl substituent on the stereoselectivity of
the conjugate addition process, we decided to examine
the reaction of substrate 13, having removed the
hydroxymethyl substituent by the route highlighted in
Scheme 3.

With a,b-unsaturated amide 13 in hand, we turned our
attention to the proposed functionalization of the b-
position of the unsaturated lactam through conjugate
addition chemistry using the more successful vinyl
nucleophile (Scheme 4).

Product 14 was isolated in good yield (67%), and we
were pleased to observe the formation of a single diaste-
reoisomer by examination of the crude reaction mixture
by 250 MHz 1H NMR spectroscopy. The relative stereo-
chemistry of 14 was confirmed by nOe studies, and
again found to have the H-atoms at the chiral centres
showing trans relative stereochemistry.9 We also at-
tempted the addition reaction with the lithiated dithio-
lane nucleophile, but in this case we only obtained an
intractable product mixture.
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Scheme 3. Reagents and conditions: (i) IBX, DMSO, rt, 24 h (70%); (ii) NaClO2, NaH2PO4, 1-methyl-1-cyclohexene, CH3CN, t-BuOH, H2O, 0 �C to
rt, 18 h (86%); (iii) (PhSe)2, PBu3, CH2Cl2, 0 �C to rt, 18 h (76%); (iv) n-Bu3SnH, AIBN, toluene, 80 �C, 2 h (81%); (v) LDA, PhSeBr, THF,�78 �C to
rt, 24 h; then NaIO4, NaHCO3, MeOH, H2O, rt, 18 h (61% for two steps).
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Scheme 4. Reagents and conditions: (i) vinylmagnesium bromide (10 equiv), CuCN (7.5 equiv), TMSCl (7.5 equiv), THF, �78 �C to rt, 24 h.
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Clearly the (protected) hydroxymethyl group of
substrate 6 plays no major role in determining the
approach of the nucleophile, with the inherent confor-
mation of the parent heterocyclic template being respon-
sible for the stereochemical induction, with the
nucleophile approaching from the least hindered (con-
vex) face of the ring system. In summary, products 7
and 14 are formed as single diastereoisomers and with
trans relative stereochemistry at positions 2 and 11b,
as required for alkaloids such as alangine, 4.

An alternative route for the introduction of substituents
onto the lactam ring would involve the incorporation of
functionality at an earlier stage in the sequence. The
development of synthetic routes to prochiral or racemic
glutarates,10 such as 15, and the subsequent use of these
oxo diesters in stereoselective cyclocondensation reac-
tions with chiral amino alcohols has previously been
demonstrated.5b In this current approach, cycloconden-
sation of the appropriate substrates leads to the forma-
tion of functionalized bicyclic lactams 16a and 16b in a
process that involves the discrimination of two enantio-
topic acetate chains (Scheme 5).

Lactams 16a,b were separable, and their relative stereo-
chemistry was established by X-ray crystallography. N-
Acyliminium ion precursor 16a, on treatment with TiCl4
NH2
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in DCM at reflux for 3 days, gave 17 in 36% yield as a
single product diastereoisomer (Scheme 6). X-ray crys-
tallography11 confirmed the relative stereochemistry of
this product to be as shown in Scheme 6, with the
H-atoms at the chiral centres now having cis relative
stereochemistry, as required in benzo[a]quinolizidine
targets, such as 1–3.

Removal of the hydroxymethyl moiety from 17 by an
analogous route to that described in Scheme 3 gave
the desired functionalized benzo[a]quinolizidine target
18.
In conclusion, we have developed new and highly stereo-
selective routes to functionalized benzo[a]quinolizidine
targets, both in the 2,11b-cis and -trans series. The rela-
tive stereochemistry of the products can be influenced
through appropriate selection of synthetic approach,
allowing complementary routes to diastereoisomerically
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substituted products 14 and 18 as single diastereoiso-
mers.12 The absolute stereochemistry of such products
can, if required, be tuned by the choice of appropriate
enantiomer of the b-aminoalcohol starting material.
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